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Estimation in Reversible Markov Chains

David H. ANNIS, Peter C. KIESSLER, Robert LUND, and Tara L. STEUBER

This article examines estimation of the one-step-ahead tran-
sition probabilities in a reversible Markov chain on a count-
able state space. A symmetrized moment estimator is proposed
that exploits the reversible structure. Examples are given where
the symmetrized estimator has superior asymptotic properties
to those of a naive estimator, implying that knowledge of re-
versibility can sometimes improve estimation. The asymptotic
mean and variance of the estimators are quantified. The results
are proven using only elementary results such as the law of large
numbers and the central limit theorem.

KEY WORDS: Asymptotic variance; Reversibility; Transition
probability estimation.

1. INTRODUCTION

This article studies estimation of the transition probabili-
ties in a time-reversible Markov chain {Xt }∞t=0. The chain’s
state space S is taken as a countable subset of {0,1, . . .}. The
chain is assumed to be irreducible, aperiodic, and positive re-
current. Such chains have a unique limiting distribution with
limt→∞ Pr[Xt = j |X0 = i] = πj for every i ∈ S, where πj > 0
for j ∈ S. The one-step-ahead transition matrix P = (pi,j )i,j∈S

has (i, j)th entry pi,j = Pr[Xt+1 = j |Xt = i]. The chain is as-
sumed to be time-homogeneous in that pi,j does not depend
on t . The data are assumed sampled from a stationary chain;
sufficient for this is that Pr[X0 = k] = πk for all states k ∈ S.

The chain is said to be reversible if

πipi,j = πjpj,i

for each pair of states i and j . Reversibility implies that the
long-term flow rate from state i to j equals that from state j

to i. Kolmogorov’s criterion allows one to assess reversibility
directly from the pi,j ’s; specifically, the chain is reversible if
and only if

pi,i1pi1,i2 · · ·pik,i = pi,ikpik,ik−1 · · ·pi1,i (1)

for each k ≥ 2 and all states i, i1, . . . , ik (Kijima 1997; Ross
2007). It is not clear whether one can statistically assess re-
versibility from a realization of a chain; however, the chain
cannot be reversible if there exist i and j with pi,j > 0 and
pj,i = 0. The works by Diaconis and Stroock (1991), Kijima
(1997), Chen (2005), Stroock (2005), and Ross (2007) are good
references for general properties of reversible chains.
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Several broad classes of Markov chains, including random
walks on graphs, birth and death chains, and many Markov
chain Monte Carlo generated chains, are known to be reversible.
For one example, a discrete-time birth and death chain on
S = {0,1, . . .} is a chain that can only move one unit from its
current position, either up or down, in any nonboundary tran-
sition. Specifically, the nonzero entries in the transition matrix
have the form pi,i+1 = αi and pi,i−1 = 1 − αi when i ≥ 1 (we
take p0,1 = α0 and p0,0 = 1−α0 where α0 > 0 so that the chain
will be aperiodic). A second example of a reversible chain is a
random walk on a graph. Here, S is a finite set and there is
a collection of bivariate pairs of states called edges. The walk
can transition from i to j only when the state pair (i, j) is an
edge. It may be helpful to think of various U.S. cities as the
states in the chain, with an edge existing between cities i and j

when it is possible to fly directly from city i to j . The cost of
traveling directly from city i to j is wi,j . Symmetry is assumed
in that one can fly directly from j to i if it is possible to fly
directly from i to j ; we also take wi,j = wj,i . The probability
of undergoing a transition from i to j is proportional to its cost
in that

pi,j = wij∑
j∈S wi,j

.

See the books by Kijima (1997), Stroock (2005), and Ross
(2007) for further examples of reversible chains.

Suppose we observe the data X0, . . . ,Xt and wish to estimate
the one-step-ahead transition probabilities pi,j for all states i �=
j ∈ S. The classical (naive) estimator of pi,j is

p̂
(N)
i,j (t) = Ni,j (t)

Ni(t)
1[Ni(t)>0], (2)

where 1[A] is an indicator that is 1 when the event A occurs and
zero otherwise, Ni,j (t) is the number of one-step-ahead transi-
tions from i to j , and Ni(t) is the number of times state i is
visited up to time t . The indicator 1[Ni(t)>0] in (2) is introduced
to avoid division by zero. The counts Ni,j (t) and Ni(t) are

Ni,j (t) =
t−1∑
�=0

1[X�=i∩X�+1=j ] and

(3)

Ni(t) =
t∑

�=0

1[X�=i].

One may ask if a priori knowledge of a chain’s reversibility
aids transition probability estimation. In particular, is p̂

(N)
i,j (t)

in (2) the best asymptotic estimator? This question was beau-
tifully answered by Greenwood and Wefelmeyer (1999) and
Greenwood, Schick, and Wefelmeyer (2001) who showed that
the symmetrized (reversible) estimator

p̂
(R)
i,j (t) = Ni,j (t) + Nj,i(t)

2Ni(t)
1[Ni(t)>0] (4)
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is not only preferable, but also asymptotically most efficient.
Since the joint distributions of (X0, . . . ,Xt ) and (Xt , . . . ,X0)

are identical in reversible chains, the estimator in (4) can be
viewed as merely averaging forward and backward versions
of (2).

The goal of this article is to further understand estimation
for reversible chains. In Section 2, the reversible and naive es-
timators are reformulated from a renewal-based perspective. In
Section 3, we show that both estimators are asymptotically un-
biased and calculate their asymptotic variances in a straightfor-
ward manner, using only the classic limit theorems from prob-
ability. Our work will show that the asymptotic variance of the
reversible estimator is never larger than that of the naive esti-
mator, that

lim
t→∞

Var(p̂(R)
i,j (t))

Var(p̂(N)
i,j (t))

∈
[

1

2
,1

]
,

and that both bounds are tight (i.e., there are examples where
the reversible estimator is, asymptotically, twice as efficient).
Implications of our results are that the naive and reversible es-
timators have the same asymptotic performance for a birth and
death chain, but that the reversible estimator is more efficient in
the case of a random walk on a graph.

2. REFORMULATION OF THE ESTIMATORS

This section uses renewal theory to express p̂
(N)
i,j (t) and

p̂
(R)
i,j (t) in a form which facilitates their asymptotic analysis.

Observe that the two estimators are identical when i = j ; hence,
we assume that i �= j . The times at which the chain visits state i

form a renewal sequence. Let Ni(t) be the number of visits (re-
newals) to state i which have occurred up to time t . The renewal
times partition the observed states into cycles, the �th cycle con-
sisting of the succession of states visited between the �th and
(�+ 1)st visits to state i. An initial sojourn of states prior to the
beginning of the first cycle exists unless X0 = i. Likewise, time
t typically occurs during the interior times of a cycle; hence, the
last cycle may be incomplete.

Let C� = 1 if the �th cycle begins with a transition from
state i to state j ; otherwise, set C� = 0. It follows that

Ni,j (t) =
Ni(t−1)∑

�=1

C�

and

p̂
(N)
i,j (t) =

∑Ni(t−1)
�=1 C�

Ni(t)
1[Ni(t)>0]. (5)

Set D� = 1 if the �th cycle ends in state j ; otherwise, set
D� = 0. For edge effects induced by the initial and possibly
incomplete last cycle, set E1(t) = 1 if the trajectory of states
before the first cycle (before visiting state i for the first time)
ends in state j ; otherwise, take E1(t) = 0. Take E2(t) as unity
only when the observed data end with a transition from j to i:
E2(t) = 1[Xt−1=j,Xt=i]. Then

Nj,i(t) = E1(t) +
Ni(t−1)−1∑

�=1

D� + E2(t).

It now follows that

p̂
(R)
i,j (t) =

∑Ni(t−1)−1
�=1

(
C�+D�

2

) + E1(t) + E2(t) + E3(t)

Ni(t)

× 1[Ni(t)>0], (6)

where E3(t) = CNi(t−1) is a third edge effect. Other renewal
representations are possible, but we have taken care to write all
statistics as functions of X0, . . . ,Xt only.

We now collect a few limiting results needed to calculate
the asymptotic bias and variance of the estimators. All conver-
gences are as t → ∞. Since the chain is aperiodic and positive
recurrent, Ni(t) → ∞ and Ni(t)/t → πi with probability 1.
The random vectors (C�,D�) are independent and identically
distributed (iid). By the strong Markov property, the probabil-
ity that a cycle begins with a transition from i to j is pi,j ; hence,
E[C�] = pi,j . Since the chain is reversible, the probability that
a cycle ends with a transition from j to i is the same as that a
cycle begins with a transition from i to j : E[D�] = pi,j . Using
C� = C2

� and D� = D2
� , we have

Var(C�) = Var(D�) = pi,j − p2
i,j .

We next compute E(C�D�). Observe that C�D� is either zero
or unity, with unity occurring if and only if C� = 1 and D� = 1.
But C� = 1 and D� = 1 when the �th cycle begins with a tran-
sition from i to j and ends in state j . Since state i cannot be
visited during the interior times of this cycle, C�D� = 1 with
probability pi,j

∑∞
k=0 ip

(k)
i,j pj,i , where ip

(k)
i,j is the “taboo prob-

ability” that starting from state i, the chain is in state j at time
t and the first return time to state i is greater than k. Here, the
adjective “taboo” indicates that state i must be avoided dur-
ing the interior times in the cycle. It follows that E(C�D�) =
pi,j

∑∞
k=0 ip

(k)
i,j pj,i and the variance of (C� + D�)/2 is

Var

(
C� + D�

2

)

= 1

4

[
2pi,j + 2pi,j

∞∑
k=0

ip
(k)
i,j pj,i − 4p2

i,j

]

= 1

2

[
(pi,j − p2

i,j ) +
(

pi,j

∞∑
k=0

ip
(k)
i,j pj,i − p2

i,j

)]
.

Finally, note that Ek(t)/Ni(t)
p → 0 with probability 1 for k =

1,2,3 and any p > 0.

3. EXPECTATION AND VARIANCE

The three theorems to follow show that both estimators are
consistent and asymptotically unbiased and determine their as-
ymptotic variances. All convergences are as t → ∞ unless oth-
erwise noted.

Theorem 1. The asymptotic mean of p̂
(N)
i,j (t) and p̂

(R)
i,j (t)

is pi,j .

Proof. By the strong law of large numbers, as m → ∞,

1

m

m∑
�=1

C� → pi,j and
1

m

m∑
�=1

(
C� + D�

2

)
→ pi,j

2 General
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with probability 1. But since Ni(t) is integer-valued and con-
verges to infinity and Ni(t − 1)/Ni(t) → 1 with probability 1,

1

Ni(t)

Ni(t−1)∑
�=1

C� → pi,j

and

1

Ni(t)

Ni(t−1)−1∑
�=1

(
C� + D�

2

)
→ pi,j

with probability 1. Also, Ek(t)/Ni(t) → 0 for k = 1,2,3 and
1[Ni(t)>0] → 1 with probability 1. Using these results and (5)

and (6), we infer that p̂
(N)
i,j (t) → pi,j and p̂

(R)
i,j → pi,j with

probability 1. Since both p̂
(N)
i,j (t) and p̂

(R)
i,j (t) are nonnegative

and bounded above by unity, the convergence of E[p̂(N)
i,j (t)] and

E[p̂(R)
i,j (t)] to pi,j follows from the dominated convergence the-

orem.

Theorem 2. As t → ∞, we have the following distributional
convergence:

√
t
(
p̂

(N)
i,j (t) − pi,j

) D−→ N

(
0,

pi,j − p2
i,j

πi

)

D= N

(
0,

Var(C1)

πi

)
. (7)

Proof. A careful analysis based on (5) and cases provides

(
p̂

(N)
i,j (t) − pi,j

) =
[∑Ni(t−1)

�=1 (C� − pi,j )

Ni(t − 1)

]
Ni(t − 1)

Ni(t)

× 1[Ni(t−1)>0] − pi,j 1[Ni(t−1)=0]. (8)

To handle the edge-effect term in (8), note that

√
tpi,j 1[Ni(t−1)=0]

P−→ 0

due to Pr[Ni(t − 1) = 0] = Pr(τ1 > t − 1) ≤ E[τ1]/(t − 1),
which is justified by Markov’s inequality. Here, τ1 is the first
time the chain visits state i; E[τ1] is finite by the assumed
positive recurrence. Observe that Ni(t − 1)/Ni(t) → 1 and
1[Ni(t−1)>0] → 1 (all with probability 1). An application of
Slutzky’s theorem now shows that our work is done if we sim-
ply prove that

√
t

Ni(t − 1)

Ni(t−1)∑
�=1

(C� − pi,j )
D−→ N

(
0,

Var(C1)

πi

)
. (9)

To verify (9), apply the central limit theorem to the iid sequence
{C�} to infer that as m → ∞,

1√
m

m∑
�=1

(C� − pi,j )
D−→ N(0,Var(C1)).

Since Ni(t) → ∞, theorem 17.1 in the book by Billingsley
(1968) gives

1√
Ni(t − 1)

Ni(t−1)∑
�=1

(C� − pi,j )
D−→ N(0,Var(C1)),

which implies (7) and (9) when combined with
√

t/Ni(t − 1) →√
1/πi and Var(C1) = pi,j − p2

i,j .

A similar argument proves the following result, the essential
change being that (6) is used in place of (5), and Var((C1 +
D1)/2) replaces Var(C1).

Theorem 3. As t → ∞,
√

t
(
p̂

(R)
i,j (t) − pi,j

)
D−→ N

(
0,

(pi,j − p2
i,j ) + (

pi,j

∑∞
k=0 ip

(k)
i,j pj,i − p2

i,j

)
2πi

)

D= N

(
0,

Var((C1 + D1)/2)

πi

)
. (10)

In terms of asymptotic efficiencies, we have now shown that

lim
t→∞

Var(p̂(R)
i,j (t))

Var(p̂(N)
i,j (t))

= Var
(

C1+D1
2

)
Var(C1)

= σ 2
R

σ 2
N

, (11)

where

σ 2
N = pi,j − p2

i,j

πi

and

(12)

σ 2
R = (pi,j − p2

i,j ) + (
pi,j

∑∞
k=0 ip

(k)
i,j pj,i − p2

i,j

)
2πi

.

Observe that
∑∞

k=0 ip
(k)
i,j pj,i ≤ ∑∞

k=0 Pri[ηi = k + 1] ≤ 1, ηi

denoting the time of first return to state i and Pri indicating the
initial condition X0 = i. Using this in (12) shows that σ 2

R ≤ σ 2
N .

In the next section, we will show that σ 2
R/σ 2

N ≥ 1/2.

4. LOWER BOUNDS FOR σ 2
R/σ 2

N

We start with two examples. In the first, C� and D� are per-
fectly correlated and the asymptotic efficiency of the naive and
reversible estimators is unity. In the second example, C� and D�

are uncorrelated and the reversible estimator is twice as efficient
as the naive estimator.

Consider a birth and death chain. This chain is skip-free in
that from state i ≥ 1, the only possible transitions are to states
i − 1 and i + 1. The transition probabilities are pi,i+1 = αi and
pi,i−1 = 1 − αi , where αi ∈ [0,1] (at state 0, we take p0,1 = α0

and p0,0 = 1−α0). Assuming αi > 0 for all i ≥ 0 and αi < 1/2
for all large i, the chain is irreducible, aperiodic, positive recur-
rent, and reversible and has a limiting distribution with form

πj =
⎧⎨
⎩

K, j = 0
α1 · · ·αj−1

(1 − α1) · · · (1 − αj )
K, j > 0.

Here, the constant K is such that the limiting distribution has
unit mass.

The only nonzero pi,j ’s occur when j = i − 1 or j = i + 1.
When j = i + 1, then if C� = 1, the �th cycle starts with a
transition from i to i + 1 and, by the skip-free property, must
end with a transition from i + 1 to i. Hence, D� = 1 for this

The American Statistician, ???? 2010, Vol. 0, No. 0 3
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cycle. If C� = 0, then the �th cycle starts with a transition from i

to i−1 and, by the skip-free property, must end with a transition
from i − 1 to i. Hence, D� = 0 for this cycle. It now follows
that Var((C� + D�)/2) = Var(C�). Thus, for skip-free chains,
the reversible and naive estimators have the same asymptotic
efficiency.

As a second example, consider an iid chain. Specifically,
X0,X1, . . . are independent and have the common probability
mass function Pr[Xi = j ] = πj with πj > 0 for all j . Such a
sequence can be regarded as a Markov chain with the transition
probabilities pi,j = πj . The stationary distribution is {πi}∞i=0
and the chain is easily shown to be irreducible, aperiodic, posi-
tive recurrent, and reversible.

To calculate σ 2
R , note that the taboo probability is

∞∑
k=0

ip
(k)
i,j =

∞∑
k=0

(1 − πi)
kπj = π−1

i πj .

It follows from (12) that

σ 2
R = 1

2
(πj − π2

j + πjπ
−1
i πjπi − π2

j )

= πj − π2
j

2
= σ 2

N

2
.

Hence, p̂
(R)
i,j (t) is asymptotically twice as efficient as p̂

(N)
i,j (t).

We close by showing that Cov(C�,D�) ≥ 0. With this and
(11), we have 1/2 ≤ σ 2

R/σ 2
N ≤ 1 and the two examples above

provide cases where the relative efficiencies of 1/2 and 1 are
achieved.

Theorem 4. C� and D� are nonnegatively correlated; that is,
Cov(C�,D�) ≥ 0.

Proof. Because of the binary structure of C� and D�, it suf-
fices to show that Pr(C� = 1,D� = 1) ≥ Pr(C� = 1)Pr(D� =
1). To this end, we note that since

Pr(C� = 1)Pr(D� = 1)

= [Pr(C� = 1,D� = 1) + Pr(C� = 1,D� = 0)]
× [Pr(C� = 1,D� = 1) + Pr(C� = 0,D� = 1)]

= Pr(C� = 1,D� = 1)[1 − Pr(C� = 0,D� = 0)]
+ Pr(C� = 1,D� = 0)Pr(C� = 0,D� = 1),

it suffices to show that

Pr(C� = 1,D� = 1)Pr(C� = 0,D� = 0)

≥ Pr(C� = 1,D� = 0)Pr(C� = 0,D� = 1). (13)

Since Pr(C� = 1,D� = 0) is the probability that a cycle begins
with a transition from i to j and ends with a transition from
some state other than j to i, we have

Pr(C� = 1,D� = 0) =
∑
A

pi,jpj,k1 · · ·pkn,i ,

where A = ⋃∞
n=1{(k1, . . . , kn); kh �= i for h = 1, . . . , n and

kn �= j}. Similarly, since Pr(C� = 0,D� = 1) is the probabil-
ity a cycle begins with a transition from i to some state other

than j and ends with a transition from j to i,

Pr(C� = 0,D� = 1) =
∑
B

pi,l1 · · ·plm,jpj,i ,

where B = ⋃∞
m=1{(l1, . . . , lm); lh �= i for h = 1, . . . ,m and

l1 �= j}.
Thus,

Pr(C� = 1,D� = 0)Pr(C� = 0,D� = 1)

=
∑
A

∑
B

pi,jpj,k1 · · ·pkn,ipi,l1 · · ·plm,jpj,i .

An application of Kolmogorov’s criteria for reversibility in (1)
gives

Pr(C� = 1,D� = 0)Pr(C� = 0,D� = 1)

= pi,jpj,i

(∑
A

∑
B

pi,kn · · ·pk1,jpj,lm · · ·pl1,i

)
.

Since n and m are both at least 1 and l1 and kn do not equal j ,
each term in the double summation is the probability of some
cycle that begins with a transition from i to some state other
than j and ends with a transition from some state other than j

to i. Thus, the term inside the parentheses is less than or equal
to Pr(C� = 0,D� = 0) and

Pr(C� = 1,D� = 0)Pr(C� = 0,D� = 1)

≤ pi,jpj,i Pr(C� = 0,D� = 0). (14)

Because one way for a cycle to have C� = 1 and D� = 1 is to
make a transition from i to j and then immediately back to i,
we have

pi,jpj,i ≤ Pr(C� = 1,D� = 1). (15)

Combining (14) and (15) gives (13) and completes the proof.

5. CONCLUSION AND COMMENTS

Reversibility is a structural property inherited by many
Markov chains. Reversibility can be exploited in some cases to
obtain transition probability estimates that have smaller asymp-
totic variances than naive estimators based on ratios of counts.
The improvement in the asymptotic efficiency of a reversible
estimate, relative to a naive estimate, is quantified in (11). In
cases where the chain possesses the so-called skip-free prop-
erty, such as the birth and death chain in Section 1, there is
no improvement; in other cases, such as the random walk on
a graph, some improvement may be possible. In any case, the
reversible estimator’s asymptotic variance can be no lower than
half the naive estimator’s asymptotic variance.

[Received April 2009. Revised December 2009.]
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