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Summary

In this paper, we provide a stochastic ordering of the Studentized range statistics under a balanced one-
way ANOVA model. Based on this result we show that, when restricted to the multiple comparisons
with the best, the Newman–Keuls (NK) procedure strongly controls experimentwise error rate for a
sequence of null hypotheses regarding the number of largest treatment means. In other words, the NK
procedure provides an upper confidence bound for the number of best treatments.
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1 Introduction

Consider a balanced one-way analysis of variance model, with independent observations
Xij � Nðmi; s

2Þ; 1 � i � k; 1 � j � n: By convention, we assume that larger means are preferable to
smaller means. In this paper, we are concerned with the inference about the number of best treatments
whose means equal mðkÞ ¼ max1� i� k mi.

First, we formulate a sequence of null hypotheses concerning the number of largest treatment
means. Without loss of generality, we assume each of k treatments satisfies mi � 0 with at least one
treatment achieving equality (i.e., mðkÞ ¼ 0). Let

N ¼ the number of mi being zero ði:e: the number of the best treatmentsÞ: ð1Þ
Conversely the number of inferior treatments is k � N. For each integer m 2 ½2; k�, consider testing:

H0;m : N � m vs:HA;m : N � m� 1 ð2Þ

and define a corresponding parameter configuration for each H0;m,

mm ¼ ðm1; :::; mkÞ ¼: ð0; � � � ; 0;�1; � � � ;�1Þ ; ð3Þ
where the first m components are zero. Finally define

B ¼ fH0;m : 2 � m � kg ; ð4Þ

as the set containing all null hypotheses of interest in this paper.
Notice that H0;m2 � H0;m1 for any m1 < m2; thus B is closed under intersection. Therefore, we may

apply the closed test procedure (Marcus, Peritz, and Gabriel, 1976) to conduct simultaneous tests for
all hypotheses concerning N, the exact number of largest treatment means.
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In particular the Newman–Keuls (NK) step-down test (Keuls, 1952), adapted from all pairwise
comparisons to the set of multiple comparisons with the best, can be described as follows. Let
m̂mi ¼

Pn
j¼1 Xij=n and ŝs2 ¼

Pk
i¼1

Pn
j¼1 ðXij � m̂miÞ

2=ðkðn� 1ÞÞ be the familiar estimates of respective
treatment means and common variance. Note that each m̂mi has a normal sampling distribution, while
kðn� 1Þ ŝs2 =s2 is c2

n-distributed with n ¼ kðn� 1Þ degrees of freedom. Denote by Ti the Studentized
statistics

ffiffiffi
n
p

m̂mi =ŝs; 1 � i � k and, for any integer m 2 ½2; k�, define the m range statistic

Wm ¼ T½k� � T½k�mþ1� ¼
ffiffiffi
n
p
ðm̂m½k� � m̂m½k�mþ1�Þ

ŝs
; ð5Þ

where ½1�; . . . ; ½k� are the random integers satisfying m̂m½1� � . . . � m̂m½k�. The NK procedure proceeds as
follows:

	 Step 1 Test H0;k : N � k vs. HA;k : N � k � 1 by comparing the k range Wk to qk, the critical
value proposed by Tukey (1953) for all pairwise comparisons (see Appendix 1 for details). If Wk

is no larger than qk, we fail to reject H0;k and conclude none of the treatment means are signifi-
cantly different and stop. Otherwise we reject H0;k and move to

	 Step 2 Test H0;k�1 : N � k � 1 vs:HA;k�1 : N � k � 2 by comparing the k � 1 range Wk�1 with
qk�1. Again, if Wk�1 is no larger than qk�1, we fail to reject H0;k�1 and conclude that the k � 1
largest means are not significantly different and stop. Otherwise we reject H0;k�1 and move to the
next step.
..
.

	 Step k� 1 Test H0;2 : N � 2 vs: HA;2 : N � 1 by comparing W2 with q2. If W2 is no larger than
q2, we fail to reject H0;2 and conclude that the two largest means are not significantly different
and stop. Otherwise, conclude that there is a single largest mean and stop.

In this article, we show that the NK procedure strongly controls experimentwise error rate for B,
the sequence of null hypotheses regarding the number of largest treatment means. In practice, it would
be of interest to identify as many inferior treatments as possible under the condition that there is at
most a probability of claiming any of the best treatments to be inferior; or equivalently select a subset
of treatments such that it contains all of the best treatments with a pre-specified minimum probability
of 1� a. Finner and Giani (1994) conjectured that the NK procedure may be the best among step-
down procedures in identifying inferior treatments. Note a Type I error regarding B is an error in
identifying the set of inferior treatments. Therefore, our result on strong control of experimentwise
error rate for test of N is a necessary condition for the conjecture to hold. However, we are unable to
prove the stronger statement that the NK procedure controls the Type I error of claiming any of the
best treatments to be inferior.

Various types of selection procedures have been developed in the literature, pioneered by the works of
Bechhofer (1954) and Gupta (1956). The indifference zone formulation (Bechhofer, 1954) requires that
the probability of selecting the best population is at least 1� a whenever there is only one best treatment
and it exceeds other means by a particular threshold representing the quantity of indifference to the user.
The subset selection formulation (Gupta, 1956) chooses a nonempty subset of the populations so that the
selected subset (of random size) includes one of the best population with a high probability. If dk�1 is the
critical value used in Dunnett’s one-sided multiple comparison with control method (see Appendix 1 for
definition), then Gupta’s method identifies the subset I ¼ f½i� : T½i� < T½k� � dk�1g as consisting of infer-
ior treatments. More recent developments include enhanced two-stage selection procedures (Chick and
Inoue, 2001) and fully sequential procedures (Kim and Nelson, 2001; Chen and Kelton, 2005). However,
none of these procedures controls the probability of including all best treatments, which is accomplished
by the four methods introduced below.

Lam (1986) proposed some single-step procedures to identify a subset of “good” populations whose
means are within e of the best, i.e. mi � m½k� � e. This requires the probability of including all “good”
treatments to be no less than 1� a. In the special case of selecting the best populations (e ¼ 0), the
procedure identifies the subset I ¼ f½i� : T½i� < T½k� � qkg as consisting of inferior treatments.
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From the perspective of multiple comparisons, Edward and Hsu (1983) provided simultaneous con-
fidence intervals for the difference between each treatment and the best. These intervals may be used
to identify the inferior treatments.1 More specifically, if jdjk�1 denotes the critical value used in Dun-
nett’s two-sided multiple comparison with control method (also see Appendix 1 for details), then the
unconstrained multiple comparison with the best (UMCB) method of Edward and Hsu (which we
abbreviate as EH) identifies inferior treatments as I ¼ f½i� : T½i� < min G� jdjk�1g, where
G ¼ fT½j� : T½j� > T½k� � jdjk�1; 1 � j � kg. That is, it first selects a subset of good treatments denoted
by G and subsequently designates those treatments at least jdjk�1 worse than the worst element in G
as inferior.

Brostr�m (1981) and Finner and Giani (1994) considered a step-down subset selection procedure.
With critical values ck;m; 2 � m � k; defined in Appendix 1, their procedure (which we abbreviate as
BFG) identifies inferior treatment as follows:

	 Step 1 Start with Wk ¼ T½k� � T½1�. If Wk � ck;k, then conclude that there is no inferior treatment
and stop; otherwise, conclude that treatment ½1� is inferior and go to step 2.

	 Step 2 If Wk�1 ¼ T½k� � T½2� � ck;k�1, then stop; otherwise, conclude that treatments ½1� and ½2�
are inferior and go to step 3.

..

.

	 Step k-1 If W2 ¼ T½k� � T½k�1� � ck;2, then conclude that treatments ½1�; . . . ; ½k � 2� are inferior;
otherwise, conclude that treatments ½1�; . . . ; ½k � 1� are inferior.

Finner and Giani (2001) and Finner, Giani and Strassburger (2006) also studied selection of good
treatments, providing least favorable parameter configurations.

Based upon an acceptance set approach, Hayter (2007) proposed a new step-down procedure with the
primary goal of identifying as many treatments as possible to be strictly inferior to the best treatments.
Instead of ck;m, his procedure uses critical values wk;m as defined in Appendix 1. Generally, we have
ck;m > wk;m; 8 2 � m � k (which are known to hold when k � 5), thus the Hayter procedure is more
powerful than the BFG method. The Hayter procedure also allows construction of a set of simultaneous
confidence intervals which indicate how inferior each treatment could be relative to the best one.

All procedures listed above may be used to conduct simultaneous test of B as follows: reject hy-
potheses H0;m for k � jIj þ 1 � m � k but accept H0;m for m � k � jIj, where jIj is number of identi-
fied inferior treatments. Since all methods (Lam, EH, BFG and Hayter) excluding the Gupta proce-
dure control the Type I error of claiming any of the best treatments to be inferior, they all control the
experimentwise error rate for the simultaneous test of B. However, because qk > ck;m > qm and
qk > wk;m > qm; 8 2 � m � k � 1, the Lam, BFG and Hayter procedures are always less powerful
than the NK method for the simultaneous test regarding the number of best treatments.

The remainder of the article is organized as follows. In Section 2, we state the main results: first
we establish a monotone property of the range statistics, which identifies the least favorable distribu-
tions in the null hypotheses; then we prove that the NK test strongly controls experimentwise error
rate. An illustrative example is presented in Section 3 and some simulation results are given in Sec-
tion 4. The technical details are deferred to the Appendices.

2 Main Results

2.1 A monotone property

In this section, we establish a stochastic ordering of the Studentized range statistics as the m’s change.
Theorem 1 below gives our first result. The proof is deferred to Appendix 2.

Biometrical Journal 50 (2008) 5 863

1 The constrained multiple comparison with the best (CMCB) method of Hsu (1984) may also be used to identify the
inferior treatments. It identifies the same inferior treatments as Gupta’s (1956) method. See Hsu (1996) for more details.
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Theorem 2.1 For any 2 � m � k, the random variable Wm is stochastically largest at mm among
H0;m. Hence, the rejection region Rm ¼ fWm > qmg is a level-a test for H0;m.

2.2 Strong control of the experimentwise error rate

To conduct the simultaneous tests for B ¼ fH0;m : 2 � m � kg,
reject H0;m ði:e:; assert HA;mÞ if Rj is true for all m � j � k: ð6Þ

Notice two facts: (i) B is closed under intersection, and (ii) for each 2 � m � k, Rm is a level-a test
for H0;m by Theorem 1. Therefore, the experimentwise error rate is no greater than a by the closed
test procedure proposed by Marcus, Peritz, and Gabriel (1976). In summary, we have our second
result.

Theorem 2.2 The simultaneous tests (6) for B (i.e., using the NK procedure for MCB) control the
experimentwise error rate at a in the strong sense.

Equivalently, the above result can be stated in terms of upper confidence bound for the number of
best treatments N. More formally, we summarize this as the following Corollary.

Corollary 2.3 Let N̂N be the largest index m such that H0;m is not rejected by the NK procedure, that is,

N̂N ¼ max ff1g [ fi : i 2 ½2; k�;Wi � qigg : ð7Þ
Then N̂N is a proper upper confidence bound for the number of best treatments N, i.e.,
PðN̂N � NÞ � 1� a :

3 An Illustrative Example

In dose-response studies, after identifying effective doses that have mean response significantly better
than the mean response of the control, it is of great interest to find the smallest dose beyond which no
further beneficial effects are seen (International Conference on Harmonization, 1994). This is called
the maximum useful dose, formally defined as MUD ¼ min fi : mi � minj� i mjg, where the treatment
indices 1; . . . ; k correspond to increasing dose levels of a drug. A confidence lower bound for the
MUD can be obtained by first selecting a subset that contains all best doses and then choosing the
smallest dose among the selected. To illustrate the method, consider the dose-response data taken
from Miyazaki et al. (2002), which reported the dose-response effects of pioglitazone on glycemic
control, insulin sensitivity, and insulin secretion in patients with type 2 diabetes. Table 1 presents the
mean and SD (SEM was reported in the original paper) of the change in plasma glucose concentration
before and after 26 weeks of treatments, where the smaller means are preferable to larger means. The
Bartlett’s test fails to reject the hypothesis of equal variance, so the proposed procedure is applied
under the equal variance assumption.

864 S. S. Wu, W. Wang and D. H. Annis: Number of Best Treatments

Table 1 The summary statistics for the change of plasma glucose concentration
from Miyazaki et al. (2002).

Group Pioglitazone Sample SD

i
dose (mg/day)

size mean

1 Placebo 11 14 112.8
2 7.5 12 �14 65.8
3 15 13 �3 61.3
4 30 11 �70 63.0
5 45 11 �94 69.6
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Compared to the Placebo group, patients treated with 30 and 45 mg/day of pioglitazone have signif-
icantly more decreases in mean plasma glucose concentration, indicating the beneficial effect for the
two highest doses. To identify the maximum useful dose, we compare all groups with the observed
best treatment, the 45 mg/day group. The proposed procedure requires equal sample size across
groups. However, since the sample sizes are approximately equal, the range statistics Wm are evaluated

based on
ffiffiffi
2
p
ðm̂m½k�mþ1� � m̂m5Þ=ŝs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n5 þ 1=n½k�mþ1�

q
using the pooled SD estimate of 76.25 with 53

degrees of freedom. Table 2 presents Wm along with the critical values qm; ck;m;wk;m. From the table
we see that the NK procedure rejects hypotheses H0;m for 3 � m � 5 at a ¼ 0:05 and accepts hypoth-
esis H0;2. Therefore, we conclude that N ¼ 2. Intuitively, since the two largest dose levels (i ¼ 4 and
5) had the smallest sample means, their true means are likely to be the smallest. Hence we estimate
the maximum useful dose of Pioglitazone as 30 mg/day. On the other hand, the Lam, BFG and Hayter
methods would only select the Placebo and 15 mg/day as inferior treatments and claim N ¼ 3, i.e.,
accept 7.5 mg/day as not significantly different from the best. As for the EG procedure, since
jdj4 ¼ 3:553, it would first select the two highest doses as good treatments, and then only designate
the Placebo as the inferior treatment through comparisons with the 30 mg/day group.

In addition, Strassburger, Bretz and Finner (2007) proposed an ordered multiple comparison with
the best procedure that is also valid in the case of unbalanced design, and their procedure yields that
45 mg/day is a lower confidence bound for the MUD.

4 Some Simulation Results

Simulation studies were conducted to assess the effectiveness of different selection procedures: 1) EH:
the CMCB method of Edward and Hsu (1983); 2) Lam: Lam’s single step method; 3) BFG: the step-
down procedure of Brostr�m (1981) and Finner and Giani (1994); 4) Hayter: the step-down method
proposed by Hayter (2007) and 5) NK: the NK procedure. The Gupta method was excluded from
simulation study because it does not control the Type I error of claiming any of the best treatments to
be inferior, even though the procedure can be modified to meet this condition (see Strassburger, Bretz
and Finner, 2007). We considered scenarios such that the number of treatments, k, is between three
and eight, while the number of best treatments, N, ranges from one to three. It is assumed that the
means corresponding to inferior treatments are equally spaced between 0 and 0.8. For example,
m ¼ ð�0:8;�0:6;�0:4;�0:2; 0; 0Þ when k ¼ 6 and N ¼ 2. The nominal Type I error rate is set at
0.05, and the within group variance is assumed fixed at s ¼ 1.

For each combination of k and N, we evaluated the sample size required by each procedure so that
its probability of completely correct selection (excluding all inferior treatments while selecting all best
treatments) is 80% based on 100,000 simulations, see Table 3. Note that, in many cases especially
when k ¼ 7 or k ¼ 8, the 80% completely correct selection goal would require sample sizes too large
to be useful for usual experiments, in such cases it may be more appropriate to require 80% probabil-
ity of excluding all inferior treatment. Also presented in Table 3 are the efficiencies of the NK proce-
dure relative to the other methods, where the relative efficiency is defined as the ratio of sample sizes
needed by any other procedure and the NK method to achieve 80% probability of completely correct

Biometrical Journal 50 (2008) 5 865

Table 2 The range statistics Wm and critical values qm; ck;m;wk;m in the case of
a ¼ 0:05 and k ¼ 5 for the dose-response data.

m Wm Corresponding dose qm ck;m wk;m

5 4.6979 Placebo 3.9885 3.9885 3.9885
4 4.1200 15 3.7467 3.8782 3.8557
3 3.5547 7.5 3.4082 3.7334 3.6406
2 1.0440 30 2.8310 3.5224 3.1967
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Table 3 Sample sizes needed by the five selection procedures to ensure that P (Completely Correct
Selection) ¼ 0.8. The numbers in parenthesis are relative efficiencies defined as the ratio of sample
sizes needed by any other procedure and the NK method.

N Procedures k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8

1 EH 127 (1.30) 303 (1.37) 562 (1.42) 909 (1.48) 1344 (1.52) 1875 (1.55)
Lam 127 (1.30) 327 (1.48) 639 (1.62) 1065 (1.73) 1621 (1.83) 2632 (2.18)
BFG 114 (1.16) 283 (1.28) 533 (1.35) 870 (1.41) 1294 (1.46) 1807 (1.50)
Hayter 108 (1.10) 259 (1.17) 483 (1.22) 782 (1.27) 1163 (1.31) 1612 (1.34)
NK 98 221 395 615 885 1206

2 EH 39 (1.56) 166 (1.60) 382 (1.63) 704 (1.69) 1123 (1.73) 1650 (1.76)
Lam 25 (1.00) 109 (1.05) 274 (1.17) 523 (1.26) 865 (1.33) 1520 (1.62)
BFG 25 (1.00) 104 (1.00) 249 (1.06) 460 (1.11) 747 (1.15) 1103 (1.18)
Hayter 25 (1.00) 104 (1.00) 245 (1.04) 449 (1.08) 718 (1.10) 1060 (1.13)
NK 25 104 235 416 650 938

3 EH 44 (1.76) 181 (1.76) 420 (1.82) 767 (1.85) 1221 (1.89)
Lam 25 (1.00) 108 (1.05) 259 (1.12) 484 (1.17) 929 (1.44)
BFG 25 (1.00) 104 (1.01) 244 (1.06) 444 (1.07) 709 (1.10)
Hayter 25 (1.00) 103 (1.00) 240 (1.04) 439 (1.06) 699 (1.08)
NK 25 103 231 415 645

Figure 1 Comparison of the five selection procedures on Type I error of
claiming any of the best treatments to be inferior. All procedures control
the Type I error. When N ¼ 1 these procedures are overly conservative –
they almost never identify the besttreatment as inferior. In addition, the
figure shows that the NK procedure is less conservative than the Hayter
method, which is less conservative than the BFG method.
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selection. Table 3 shows that the NK procedure is more efficient than all other methods, as implied by
the theoretical results. It is worth noting that the efficiencies tend to increase in k for a fixed N, and
decrease in N for a fixed k (except for the EH method). For example, when k ¼ 8, the efficiencies of
the NK procedure relative to the Hayter method are 134%, 113%, 108%, respectively as N goes from
1 to 3. Furthermore, the EH method becomes worse than the Lam method for the cases where N > 1.

Figure 1 compares the five selection procedures on frequency of Type I error (i.e. of claiming any
of the best treatments to be inferior). It should be kept in mind that the comparison is based on
different sample sizes (as presented in Table 3) for the procedures. The figure indicates that all proce-
dures control the Type I error but are overly conservative when there is only one best treatment and
the inferior treatments are equally spaced between zero and 0.8 times standard deviations from the
best. These procedures seldom identify the best treatment as inferior if sample sizes are large enough
to guarantee that the probability of completely correct selection is 80%. In addition, the figure shows
that the NK procedure is less conservative than the Hayter method, which, in turn, is less conservative
than the BFG method, consistent with the theoretical results.

5 Discussion

In this paper, we provide a stochastic ordering of the Studentized range statistics under a balanced
one-way ANOVA model. Based on this result we show that, when restricted to the multiple compar-
isons with the best, the Newman–Keuls (NK) procedure strongly controls experimentwise error rate
for a sequence of null hypotheses regarding the number of largest treatment means. It is worth men-
tioning that, if we have some prior knowledge or believe that there are at most k0 < k largest means,
we may conduct the simultaneous tests for the subset Bk0 ¼ fH0;m : 2 � m � k0g of B.

Our hypotheses consider N, the number of best treatments. However, the Lam, BFG, EH, and Hay-
ter methods all strongly control experimentwise error of claiming any of the best treatments to be
inferior. In other words, they are concerned with the multiple testing problem of testing the family of
null hypotheses H ¼ fHi : 1 � i � kg, where Hi ¼ fmi ¼ mðkÞg is the hypothesis that treatment i is a
best treatment. A connection between B and the closure of H can be established as follows. Let
HJ ¼ \j2J Hj ¼ fm : mðkÞ ¼ minj2J mjg, then H0;m can be expressed as H0;m ¼ [J : jJj¼m HJ . Thus, the
test that rejects H0;m if Wm > qm can be interpreted as a test for the union of all intersection hypoth-
eses HJ with jJj ¼ m. In addition, the hypotheses in B can also be written in terms of ranked means
(H0;m ¼ fm : mðk�mþ1Þ ¼ mðkÞg). It would be an equally interesting problem to show that the NK test
also strongly control experimentwise error with regard to H, i.e., when we determine N̂N, we claim that
not only N � N̂N, but also m½1�; . . . ; m½k�N̂N� are the treatments inferior to the best. This problem is very
challenging and deserves further study. Nevertheless, if one makes a Type I error regarding N, then an
error is made for identifying the set of inferior treatments. Therefore, a strong control of experiment-
wise error rate on N is a necessary condition for that on the set of inferior treatments.

Corollary 2.3 provided an upper confidence bound for the number of best treatments N. It remains
unknown whether the confidence bound N̂N can still be improved and whether it is a median unbiased
estimate for N in the case of a ¼ 0:5. It may also be of interest to construct a lower confidence bound
or a two-sided confidence interval for N.

6 Appendix 1. Definitions of Critical Values

Suppose Zi � Nð0; 1Þ; 1 � i � k and U �
ffiffiffiffiffiffiffiffiffiffi
c2

n=n
q

are independent random variables. For any given a,
we define critical values da; k�1; n; jdja; k�1; n and qa; k; n such that:

P max
1� i� k�1

Zi � Zk � da; k�1; nU
� �

¼ 1� a ;

P max
1� i� k�1

jZi � Zkj � jdja; k�1; nU
� �

¼ 1� a ;

P max
1� i;j� k

jZi � Zjj � qa; k; nU
� �

¼ 1� a : ð8Þ

Biometrical Journal 50 (2008) 5 867
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These critical values are used in Dunnett’s one-sided multiple comparison with control (MCC) meth-
od, Dunnett’s two-sided MCC method and Tukey’s all pairwise comparisons, respectively. When there
is no ambiguity concerning a and n, we suppress them notationally and denote these critical values by
dk�1; jdjk�1 and qk instead of the more cumbersome da; k�1; n; jdja; k�1; n and qa; k; n. It is worth mention-
ing that for fixed a and n, these critical values satisfy dk�1 < jdjk�1 < qk and they are increasing in k.

For the step-down procedures proposed by Brostr�m (1981) and Finner and Giani (1994), we define
critical values ca

k;m;n such that ca
k;k;n ¼ qa;k;n and ca

k;m;n satisfies

P
max1� a� k�m Za �mink�mþ1� b� k Zb � ca

k;m; nU

maxk�mþ1� i; j� kjZi � Zjj � ca
k;m; nU

 !
¼ 1� a : ð9Þ

Furthermore, for the Hayter method, the critical values wa
k;m; n are iteratively defined by

P
max1� a� k�m Za �mink�mþ1� b� k Zb � wa

k;mþ1; nU

maxk�mþ1� i; j� k jZi � Zjj � wa
k;m; nU

 !
¼ 1� a ; ð10Þ

with initial values wa
k; k; n ¼ qa; k; n. Once again, we suppress a and n in the notation when there is no

ambiguity, and denote these critical values by ck;m and wk;m. Note that ck;m and wk;m must lie between
qm and qk. Furthermore numerical investigations have shown that for common a and n,
ck;m > wk;m; 82 � m � k (this is true for all a and n when k � 5), which implies that the Hayter
procedure is more powerful than the BFG method.

7 Appendix 2. Proof of Theorem 2.1

It suffices to show that for any m 2 H0;m and any constant c,

PmmðWm � cÞ � PmðWm � cÞ : ð11Þ
Let Xi ¼

ffiffiffi
n
p

m̂mi =s; 1 � i � k when the true treatment means are m ¼ ðm1; m2; � � � ; mkÞ, while
Yi ¼

ffiffiffi
n
p

m̂mi =s; 1 � i � k when the true treatment means are mm. Since m 2 H0;m, it has at least m
components equal to zero. Without loss of generality we assume that m1 ¼ m2 ¼ � � � ¼ mm ¼ 0, hence
ðX1; � � � ;XmÞ and ðY1; � � � ; YmÞ have the same multivariate standard normal distributions.

By Lemma 2.1 in Liu (1995), PðXðkÞ � Xðk�mþ1Þ � cÞ is nondecreasing in mð1Þ ¼ min1 � i� kmi.
Therefore PðXðkÞ � Xðk�mþ1Þ � cÞ achieves minimum at mð1Þ ¼ �1. Hence we have

PðYðkÞ � Yðk�mþ1Þ � cÞ � PðXðkÞ � Xðk�mþ1Þ � cÞ; 8 c : ð12Þ

Secondly, if gðsÞ is the probability density function of ŝs=s,

PmmðWm � cÞ ¼ Pmm

ffiffiffi
n
p
ðm̂mðkÞ � m̂mðk�mþ1ÞÞ

ŝs
� c

 !

¼ Pmmð
ffiffiffi
n
p

m̂mðkÞ =s�
ffiffiffi
n
p

m̂mðk�mþ1Þ =s � cŝs=sÞ
¼ PðYðkÞ � Yðk�mþ1Þ � cŝs=sÞ
¼
Ð

gðsÞ PðYðkÞ � Yðk�mþ1Þ � csÞ ds: ð13Þ

Similarly, when the true treatment means are m,

PmðTm � cÞ ¼ PðXðkÞ � Xðk�mþ1Þ � cŝs=sÞ
¼
Ð

gðsÞ PðXðkÞ � Xðk�mþ1Þ � csÞ ds : ð14Þ

The proof is complete by noting that (12), (13) and (14) together imply (11).
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